Abstract

Film cooling adiabatic effectiveness of a simulated turbine airfoil leading edge was studied experimentally. The leading edge had two rows of holes, one at nominally the stagnation line position and the second a few hole diameters downstream. Hole positions at the leading edge, and inclination of the holes with respect to the surface, were different than typically used in previous studies, but were representative of current design practice. Various leading edge film cooling parameters were investigated including stagnation line position, free-stream turbulence level, leading edge geometry, and coolant to mainstream density ratio. Large density ratios were obtained by cooling the injected coolant to very low temperatures. Large scale, high level free-stream turbulence (Tu = 20%) was generated using a specially developed cross-jet turbulence generator. An infrared camera system was used to obtain well resolved surface temperature distributions around the coolant holes and across the leading edge. Results from the experiments showed considerably higher optimum blowing ratios than found in previous studies. The stagnation line position was found to be important in influencing the direction of coolant flow from the first row of holes. High free-stream turbulence levels were found to greatly decrease adiabatic effectiveness at low blowing ratios (M = 1.0), but had little effect at high blowing ratios (M = 2.0 and 2.5). Adiabatic effectiveness distributions were very similar for circular and elliptical leading edges. Experiments conducted at coolant to mainstream density ratios of 1.1 and 1.8 showed distinctly different flow characteristics in the stagnation line region for the different density ratio coolants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.