Abstract

In the present paper, we study the average fluorescence lifetimes, detected by using the time-correlated single-photon-counting (TCSPC) technique, of three thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs), which are ~6 ns, ~9 ns and ~11 ns; and the fluorescence kinetic process includes two parts:the slow process and the fast process. With the increase of the particle size, the slow process becomes longer, but the fast process becomes shorter. Afterwards, by using both femtosecond transient absorption and fluorescence up-conversion time-resolved spectrum techniques, we have investigated the interband relaxation process of three TGA-CdTe QD samples, with the nanoparticle diameters of 2.3, 2.8 and 3.5 nm. Investigation indicates that for the three QD samples, exciton filling rate becomes slower in the highest excited state and the lowest excited state, among them, the time of exciton filling increases from 0.33 to 0.79 ps for the highest excited state, while the time of exciton filling increases from 0.53 ps to 1 ps for the lowest excited state. Moreover, the two kinds of experiment provide complementary information and obtain the full image of interband relaxation process. Result shows that the bleach recovery of the 1 S transition shows an initial rise, but the fluorescence up-conversion signal for the 1 S transition is slower in rise time, which can provide help in the application of optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.