Abstract

In this paper tooth contact deviations from the plane of action and their effects on gear transmission error are investigated. Tooth contact deviations come from intentional modification of involute tooth surfaces such as tip and root profile relief; manufacturing errors such as adjacent pitch error, profile errors, misalignment and lead errors; and tooth elastic deflections under load, for example, bending and local contact deflections. Those deviations are usually neglected on gear tooth contact models. A procedure to calculate the static transmission error of spur and helical gears under loading is proposed. In the proposed procedure, contact analysis is carried out on the whole tooth surface, eliminating the usual assumption that tooth contact occurs only on the plane of action. Lead and profile modifications, manufacturing errors and tooth elastic deflections are considered in the calculation procedure. The method of influence coefficients is employed to calculate the tooth elastic deflections. Load distribution on gear meshing is determined using an iterative-incremental method. Results of some numerical examples of spur and helical gears are analysed and discussed. The results indicate that the tooth contact deviations from the plane of action can lead to imprecision on the gear transmission error calculation if they are not take into account. Therefore, the proposed procedure provides a more accurate calculation methodology of gear transmission error, since a global contact analysis is done.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.