Abstract

Low-enthalpy geothermal resources (<150 °C) can be used for electricity generation and are widespread around the world, occurring at shallow depths. At the same time, in many parts of the world, there are existing low-enthalpy geothermal wells that are used for a multitude of applications such as for buildings’ heating and agriculture-related applications. The dominant technology to convert low-grade heat (<150 °C) to electricity is the Organic Rankine Cycle (ORC). The autonomous polygeneration microgrid (APM) concept aims to holistically meet in a sustainable way the needs of an off-grid community in terms of electrical loads, space heating and cooling, potable water production through desalination, and the use of hydrogen as fuel for transportation, in the most cost-effective manner possible. Photovoltaics (PVs) and wind turbines have been investigated extensively, since PVs can be installed practically anywhere in the world and wind turbines in areas with sufficient wind potential. The aim of this paper is to investigate techno-economically the potential of utilizing low-enthalpy geothermal resources in small-scale APMs through an ORC engine to fully satisfy the needs of small settlements. In order to accomplish this task with confidence, a case study for the Greek island of Milos has been developed and a typical settlement has been considered. It is worth mentioning that experimental results from a realized low-power (<10 kWe) ORC engine manufactured to operate at temperatures up to 140 °C are used to add reliability in the calculations. In order to meet the needs of the people, four different APMs based on PVs, wind turbines, and geothermal ORC of different but appropriate configurations were designed and sized through optimization. The optimization process was based on particle swarm optimization (PSO). The comparative examination of the results shows that the use of a low-power, low-temperature ORC engine in an APM is technically feasible; more cost effective than the configurations based on PVs, wind turbines, or combination of both; and has increased environmental sustainability.

Highlights

  • The current paper investigates techno-economically the use of small-scale (

  • For the system in Case Study No 4, it was assumed that two ORC engines were installed with a total power of 6.70 kW; test simulations showed that a system with one engine was unable to meet the set load

  • This paper investigated the use of small-scale low-enthalpy geothermal power generation through an ORC engine in the autonomous polygeneration microgrid (APM) topology

Read more

Summary

Introduction

The current paper investigates techno-economically the use of small-scale (

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.