Abstract

AbstractWC/TiC-based cermets are, generally, considered as potential alloys widely used in hot rolling industry because of their interesting properties, namely high resistance to wear and oxidation. This work was aimed at studying the tribological behaviour, at relatively high temperatur, of WC/TiC-based cermets prepared using the powder metallurgy procedure. Three WC/TiC-Co cermets were prepared with different titanium carbide (TiC) additions namely 5%, 10% and 15% [in weight percentage (wt.%)], and a tungsten carbide-cobalt (WC-Co) grade without TiC which was considered as a reference material, resulting in a total of four samples. Friction tests were carried out, at two different contact temperatures of 450°C and 650°C, using a tribometer and an alumina ball during 2 h 46 min with load and speed of 20 N and 0.5 m/s, respectively. The obtained friction coefficients indicate that WC/TiC-based grades are relatively stable compared to the reference grade which shows an unstable friction coefficient with many peaks. It was also found that wear rates decreased with increasing TiC content, but exhibited a noticeable increase with rising temperature. Moreover, and in order to characterise the tribological degradation, the wear tracks microstructure composed of 80% WC, 15% Co and 5% of TiC, were analysed using a scanning electron microscope (SEM) process. Consequently, an enhancement of the wear resistance at 650°C was observed, and oxides of various types rich in tungsten, cobalt and oxygen were identified through SEM/energy electron spectrometery (EDS) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.