Abstract

The thermal stability of nitrogen-rich amorphous carbon nitride films (N/C≥1) is investigated from room temperature up to 600°C. The films were deposited by three different methods, namely pulsed laser deposition (PLD), inductively coupled plasma chemical vapour deposition (ICP-CVD) with gaseous precursors, and ICP-CVD utilizing transport reactions. As-deposited and annealed films were characterized with respect to their thickness, composition and bonding structure by a variety of methods including wavelength dispersive X-ray analysis (WDX), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). Annealing at 200°C leads to desorption of surface contaminants while in the range between 200 and 400°C a significant densification is observed. Above 400°C a drastic loss of film material, especially nitrogen-rich groups, sets on, leading to the total destruction of the films at 600–700°C. These observations are compared with the annealing behaviour of films with lower nitrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.