Abstract

In this paper, Sn doped In2O3 (In2O3:Sn) nanostructured films as metal oxide semiconductor material which is very important in optoelectronics and gas sensing industries, were prepared by thermal evaporation technique. It is discussed how different deposition rate (0.1, 0.2, 0.3 and 0.4 nm/s) affects the optical, electrical, microstructural and ethanol gas sensing characteristics of In2O3:Sn films and must be precisely monitored. The gas sensing performance of the films was evaluated in terms of gas concentration and operating temperature. A correlation between the crystallite size, porosity, dislocation density, outer cut-off radius of dislocation, optical band gap, activation energy and sensitivity of the films was established. The results demonstrate that the maximum sensitivity to ethanol vapors can be obtained for the sample grown at deposition rate of 0.2 nm/s. The response and recovery times of this sensor exposed to 100 ppm of ethanol vapors were determined and found to be 9.0 s and 3.9 s, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.