Abstract

Elastomers have been used in a variety of biomedical fields, including tissue engineering, soft robotics, prostheses, and cosmetics. Elastomers used for skin grafting scaffolds tend to be biodegradable, but other applications require perdurable elastomers. Advances in perdurable elastomers would allow for the development of a range of substrates useful in the creation of joint prostheses, chronic neural electrodes, implantables, and wearables. Still, for these, tailored mechanical properties and biocompatibility are required. In this work, several perdurable alkene-styrene elastomers and novel polymer blends are investigated for their stress-strain curves; with quantification of Young's moduli, fatigue behavior and standard biocompatibility. In particular, this study attempts to study polymers with mechanical properties similar to the complex characteristics of skin, through comparison with porcine skin samples. Poly (vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), a flexible polymer previously used as a wearable sensor and second skin component, was here used for comparison studies. Interestingly, this study points out that elastomer mechanical properties can be modulated to better replicate the elastic modulus of skin, in particular for KratonTM D1152, a Styrene-Butadiene-Styrene block copolymer. Namely, this is the case when such an elastomer is prepared as an electrospun matrix or as a flat dense film under low temperatures. Moreover, a specific method was optimized to obtain electrospun fibers of this alkene-styrene copolymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.