Abstract

AbstractSeveral processes have been proposed to describe the low recovery of hydraulic fracturing fluid in unconventional shale reservoirs which has caused both technical and environmental concerns. This study describes novel hydraulic experiments to quantitatively investigate the kinetics of water uptake into partially saturated shale through investigating the pressure response of injecting fluids (NaCl, KCl, MgCl2, and CaCl2 with different ionic concentrations) into crushed and sieved shale fragments. The results of the study indicate that the cumulative water uptake under pressure is likely to be controlled by three processes: surface hydration, capillary hydration including advective flow, and osmotic hydration. Each of these processes is a function of the differences between the in situ pore fluid and the injection fluid (solution chemistry and concentration) and the shale physicochemical properties, in particular the contact surface area, pore diameter, and the Cation Exchange Capacity (CEC). The uptake is not instantaneous, but is diffusion limited, with the rate governed by a number of kinetic processes. Uptake proceeds in three stages, each associated with a different process: (1) predominantly surface hydration, (2) predominantly capillary hydration and finally, (3) predominantly osmotic hydration. It was also shown that shale can take up a significant amount of water compared to its available solid volume. However, contrary to the conventional understanding, the increase in salinity of the injection fluid does not necessarily lead to reduced water uptake into shales, but is dependent on the type and concentration of cations within the shale and injecting fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.