Abstract
Production efficiency from low permeability shale gas reservoirs requires techniques to optimize hydraulic fracture (HF) completions. This may be complicated by the presence of high horizontal in-situ stresses that result in horizontal HF, for example in parts of the Western Canadian Sedimentary Basin in northeastern British Columbia. One strategy involves the simultaneous or near simultaneous hydraulic fracturing of adjacent lateral wells to maximize the fracture network area and stimulated reservoir volume. However, changes to the in-situ stress field caused by an earlier HF on subsequent HF are not accounted for in traditional hydraulic fracturing design calculations. Presented here are the results from a set of transient, coupled hydro-mechanical simulations of a naturally fractured rock mass containing two wellbores using the discontinuum-based distinct-element method. The results demonstrate the influence of stress shadows generated by a HF on the development of subsequent HF from an adjacent well. It is shown here that these interactions have the potential to change the size and effectiveness of the HF stimulation by changing the extent of the induced fracture around the secondary well. Also, the influences of in-situ stress and operational factors on the stress shadow effect are investigated and their effects on different operational techniques are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.