Abstract

The 2-furanyloxy radical is an important chemical reaction intermediate in the combustion of biofuels and aromatic compounds. We report an investigation of its electronic and vibrational structures using photoelectron and photodetachment spectroscopy and resonant photoelectron imaging (PEI) of cryogenically cooled 2-furanyloxide anion. The electron affinity of 2-furanyloxy is measured to be 1.7573(8) eV. Two excited electronic states are observed at excitation energies of 2.14 and 2.82 eV above the ground state. Photodetachment spectroscopy reveals a dipole-bound state 0.0143 eV below the detachment threshold and 25 vibrational Feshbach resonances for the 2-furanyloxide anion. The combination of photodetachment spectroscopy and resonant PEI yields frequencies for 18 out of a total of 21 vibrational modes for the 2-furanyloxy radical, including all six of its bending modes. The rich electronic and vibrational information will be valuable for further understanding the role of 2-furanyloxy as a key reaction intermediate of combustion and atmospheric interests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.