Abstract

In this paper we present the development of methods using circular dichroism spectropolarimetry with a custom-designed cuvette to increase the signal-to-noise ratio for the measurement of the secondary structure of adsorbed proteins, thus providing enhanced sensitivity and reproducibility. These methods were then applied to investigate how surface chemistry and solution concentration influence both the amount of adsorbed proteins and their secondary structure. Human fibrinogen and albumin were adsorbed onto alkanethiol self-assembled monolayers (SAMs) on gold with CH3, OCH2-CF3, NH2, COOH, and OH terminal groups from both dilute (0.1 mg/mL) and moderately concentrated (1.0 mg/mL) solutions. An increase in surface hydrophobicity was found to cause an increase in both the amount of the protein adsorbed and the degree of structural change that was caused by the adsorption process, while an increase in solution concentration caused an increase in the amount of protein adsorbed but a decrease in the degree of conformational change, with these effects being more pronounced on the more hydrophobic surfaces. The combined use of these two parameters (i.e., surface chemistry and solution concentration) thus provides ameans of independently varying the degree of structural change following adsorption from the amount of adsorbed protein. Further studies are underway to examine which of these factors most strongly influences platelet response, with the overall goal of developing a better understanding of the fundamental factors governing the hemocompatibility of biomaterial surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.