Abstract

This paper adopts a series of 1:20 scale tunnel experiments based on a series of large-scale tunnel experiments to study the influence of forced ventilation on fires. The small-scale tunnel has dimensions of 0.365m (W)×0.26m (H)×11.9m (L). Cribs using a wood-based material provide the fuel source and forced ventilation velocities from 0.23 to 1.90m/s are used. From the study of the measured heat release rate (HRR) and mass loss rate data it is found that the forced air velocity affects the fire spread rate and burning efficiency and further affects peak HRR values at different air velocities. A simple model to describe these influences is proposed. This model is used to reproduce the enhancement of peak HRR for cribs with different porosity factors noted by Ingason [1] and to assess the effects of using different length of cribs on peak HRR. The results from these analyses suggest that different porosity fuels result different involvement of burning surface area and result different changes in peak HRR. However, no significant difference to the enhancement on fire size is found when the burning surface area is similar. It is also found that the trend in the enhancement on fire size by using sufficiently long crib and available ventilation conditions matches the predictions of Carvel and Beard [2] for two-lane tunnel heavy goods vehicle fires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.