Abstract

Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of λ2V, λ2G, ΔTλ, ΔTV−0.5 and ΔTG−0.5 were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.