Abstract

Seminal plasma exosomes are now recognized to play a complex role in the regulation of the female reproductive system infertility. The objective of this study was to assess the effect of exosomes derived from the sperm of men with oligoasthenoteratozoospermia on endometrial implantation-related genes. To isolate the exosomes, we employed an ultracentrifugation method on samples derived from 10 fertile men with normal sperm parameters and 10 men with oligoasthenoteratozoospermia. The size distribution and ultrastructure of the exosomes were then characterized using transmission electron microscopy and dynamic light scattering. We detected an exosome marker using western blot analysis and confirmed the cytoplasmic localization of the exosomes by incubating them with DiI dye and visualizing them using fluorescence microscopy. After 6 hours of in vitro treatment of endometrial epithelial cells with 100 µg/ml seminal exosome, the endometrial receptivity genes were examined using qRT-PCR. To perform data analysis and quantification, we utilized Image J and Prism software. P< 0.05 were considered statistically significant. After 6 hours of treatment, the mRNA levels of MUC1, LIF, G-CSF, CX3CL1, and VEGF were significantly downregulated in the endometrial epithelial cells treated with oligoasthenoteratozoospermia exosomes compared to the normal group. Although changes were observed in the mean mRNA levels of IL8 and TGF-β genes in the oligoasthenoteratozoospermia group compared to the normal group, these differences did not reach statistical significance (p > 0.05). Oligoasthenoteratozoospermia exosomes have a distinct effect on endometrial receptivity compared to normal exosomes, leading to reduced expression of implantation-related genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.