Abstract
This study presents the results of an analysis of the influence of joint mechanical activation of a polyimide matrix and tungsten (IV) oxide (WO2) on the mechanical properties of their composites. Mechanical activation of the powder components of the matrix and the filler is performed in a vortex jet mill. The ultimate tensile strength, tensile modulus and relative elongation at break of the composites are all investigated. When using mechanical activation, an increase in tensile strength of 9% is observed with a content of 30 wt.% WO2 filler and of 12% with a content of 70 wt.% WO2 filler compared to composites in which the joint mechanical activation of components is not used. Using scanning electron microscopy, it is shown that the use of mechanical activation by dispersing in a jet-vortex mill made it possible to achieve a uniform distribution of highly dispersed filler based on tungsten dioxide in a polyimide matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.