Abstract
<abstract> <p>A three-dimensional finite element model of a vibratory wheel on soil is established though the use of the ABAQUS software platform to investigate the interaction between the wheel and soil and the resulting dynamic response during vibratory compaction. The extended linear Drucker Prager model is used to reflect the plastic deformation characteristics of the soil. The truncated boundary is treated by using a three-dimensional uniform viscoelastic artificial boundary method. The vibratory responses of the soil under the wheel, including the stress and contact force, are analyzed by using numerical simulations. The results show a decrease in the soil vertical stress at the edge of the vibrating wheel transverse to the wheel path, which may assist in identifying the rolling overlap width of the wheel. Along the wheel path, the vertical stress center is demonstrated to lie ahead of the vibrating wheel mass center, caused by the inclination of the wheel soil contact surface. The contact pressure and total grounding width of the soil under the wheel can be calculated by using the finite element method; only one-third of the total width could produce effective compression deformation.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.