Abstract
The reliability of InP/InGaAs DHBT under high collector current densities and low junction temperatures is analyzed and modeled. From the Gummel characteristics, we observe several types of device degradation, resulting from the long term changes of base and collector current in both lower and higher base–emitter voltage ranges which impacts the reduction of DC current gain. In this paper, we investigate the underlying physical mechanism of base and collector current degradation with the help of TCAD device simulation. We chose the HICUM model level2 for the modeling purpose to evaluate the drift of model parameters according to stress time. The evolution of the model parameters is described with suitable equations to achieve a physics based compact electrical aging model. The aging laws and the parameter evolution equations with stress time are implemented in compact electrical aging model which allows us to simulate the impact of device failure mechanisms on the circuit in operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.