Abstract

Graphene-supported nanoparticles (NPs) are of tremendous interests for a variety of applications recently. In this study, high-surface-area graphene powders are used for loading size-selected Pt colloidal NPs as fuel-cell catalysts for methanol oxidation reaction (MOR). It is found that the adsorption of Pt colloidal NPs on graphene surfaces is dramatically influenced by the process parameter in the mixing process. Specifically, the different solution volumes during the mixing process result in various catalyst morphologies. Pt-graphene (Pt–G) catalyst synthesized through the high-concentration solution system in the mixing process exhibits the densely-packed Pt NPs on graphene surfaces with non-flat wrinkles. Moreover, the high-density Pt NPs in the catalyst give rise to the high MOR current in its forward scan. In other words, this catalyst outperforms all the other catalysts synthesized in the low-concentration solution systems in terms of the MOR current and electrochemical surface area (ECSA). The mass activity of Pt–G-1 catalyst can reach 489.66mA/mgPt. The appropriate loading of size-selected Pt-based NPs on graphene is significant for the controlled synthesis of catalysts for fuel-cell application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.