Abstract

The spinel zinc-bismuth ferrites with nominal composition of ZnBixFe2−xO4 (x = 0, 0.5, 0.1, 0.15, 0.2, 0.25, 0.3) have been synthesized by ball milling technique. Commercially available bismuth, zinc and iron oxide powders were first mixed and then annealed at 1100 °C in an oxygen environment furnace for 10 h. The samples were then milled for 2 h in a Fritsch mille. The average grain size were estimated from the X-ray line broadening of the (311) reflection and transmission electron microscopy (TEM). The micro and nanostructure investigation was carried out by a scanning electron microscope (SEM) with maximum magnification of 20,000. Magnetic properties of the as-prepared ferrites were studied by means of alternating gradient force magneto-meter (AGFM) and Faraday balance measurement. An increasing bismuth content in ZnBixFe2−xO4 leads to a decrease in the saturation magnetization, coercive field and Neel temperature. These results can be attributed to the substitution of Bi3+ ions in the ferrite system as nonmagnetic cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.