Abstract

Silicon (Si)-doped diamond-like carbon (DLC) was prepared on Si(100) and polymethyl metha_crylate (PMMA) substrates using a C2H2–SiH4–Ar plasma immersion ion processing (PIIP) method. The chemical composition of the films was varied by adjusting the reactive gas-flow ratio of SiH4 to C2H2 during PIIP depositions. The influence of the Si dopant on the bonding structure, stress, and properties of the DLC films was investigated by using ion beam analysis techniques, Raman shift, ultraviolet/visible spectroscopy, and by analyzing the measured properties. The incorporation of Si up to 17.3 at. % produced a reduction in film stress and increased the density and optical band gap. The Si-doped DLC films also exhibited increased sp3 bonding and higher hardness (25–28 GPa). Further increase in Si dopant, to above 22 at. %, caused a transformation from DLC to amorphous silicon carbide (a-SiC) that showed high hydrogen capacity, low hardness, and low stress. Pin-on-disk tribological tests of Si-doped DLC on PMMA showed greatly improved wear and friction properties related to the uncoated PMMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.