Abstract

ZnS powders with primary crystallite sizes of only a few nanometers were prepared by three different synthesis routes at temperatures below 130 degrees C. The reaction of zinc acetate dihydrate with thioacetamide (TAA) in the presence of pyridine and triphenylphosphite (TPP) was carried out using either conventional heating or microwave heating. The obtained powders exhibit sphalerite structure as determined by X-ray diffraction (XRD). The primary crystallites have diameters between 1 and 7 nm obtained by XRD. Small angle X-ray scattering (SAXS) measurements were analyzed by the model-free inverse Fourier-transformation approach, as well as by a hard sphere-model from which particle size and polydispersity were extracted. The particle sizes by SAXS are in good agreement with the primary crystallite sizes obtained by XRD. It has been found that an increasing amount of sulfur and/or using microwave heating increases crystallite sizes. The presence of TPP decreases the particle sizes but no significant influence on the TPP concentration was observed. In the alternative third preparation route, hexamethyldisilathiane (HMDST) was used as precipitation reagent at ambient temperature, which leads to the smallest crystallite sizes of only 1 nm together with low polydispersities. Scanning electron microscopy, dynamic light scattering and UV-vis spectroscopy showed that all three synthesis routes lead to ZnS powders with aggregate sizes between 650 and 1200 nm. Both of the TAA-precipitation routes lead to spherical agglomerates which consist of spherical substructures, whereas the HMDST agglomerates are assembled from elongated objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.