Abstract
The occurrence of reactions at boundaries between adjacent miscible but unmixed aqueous streams coflowing in a microfluidic channel structure has been studied by simulation of the diffusion potentials that develop between the two coflowing aqueous electrolyte streams and by measurement of the effects of aqueous ion complexation on diffusion potentials. The microfluidic structure consisted of a Y-shaped microchannel with off-chip electrodes immersed in electrolyte reservoirs connected by capillaries to the Y-microchannel. The time-dependent, one-dimensional Nernst-Planck equation employing the electroneutrality condition was solved numerically to calculate the diffusion potentials established at the boundary between the two coflowing aqueous streams. Under the experimental conditions (channel length and width, flow rate) employed, it was shown that the use of the Henderson equation was appropriate. It was also shown that the cross-channel diffusion potential remained constant from the entrance of the channel to the exit. The influence of cation complexation by a neutral ionophore was investigated by experimentally measured diffusion potentials. It was found that potassium complexation by the cyclic polyether 18-crown-6 altered the experimental diffusion potential, whereas the interaction of sodium or lithium cations with the ionophore did not perturb the diffusion potential. The results are consistent with the literature data for aqueous-phase complexation of these cations by this ionophore. The results of these investigations demonstrate that relatively simple diffusion potential measurements between coflowing streams in microchannels may be used as a basis for study of ion complexation reactions occurring at boundaries between miscible fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.