Abstract

A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.