Abstract

Abstract The natural surge and pitch frequencies of semisubmersible offshore wind platforms are typically designed to be below the wave frequencies to avoid direct excitation. However, surge or pitch resonance can be excited by the nonlinear low-frequency loads generated by irregular incident waves. Second-order potential-flow models with added Morison drag have been found to underpredict this low-frequency excitation and response. As part of the OC6 project1, the authors performed computational fluid dynamics (CFD) simulations to enable a better understanding of the low-frequency loads and the limitations of lower-fidelity models. The focus of this paper is to set up a computationally cost-effective CFD simulation of a fixed semisubmersible platform to investigate nonlinear difference-frequency loads and establish the corresponding uncertainty in the results. Because of the high computing cost, CFD simulations of irregular waves can be challenging. Instead, simulations were performed with bichromatic waves having a shorter repeat period. A preliminary comparison with quadratic transfer functions from second-order potential-flow theory shows that CFD models consistently predict higher nonlinear wave loads at the difference frequency, likely because of flow separation and viscous drag not accounted for in potential-flow theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.