Abstract

The evaluation of pyrolysis kinetics for waste industrial hemp stem (IHS) is essential to achieve the high-value utilization of agricultural waste. In present study, firstly, non-isothermal pyrolysis experiments of IHS were performed at different heating rates using a thermogravimetric analyzer. Then, the kinetic triplets (apparent activation energy, pre-exponential factor, and reaction mechanism) of the three pseudo components for IHS (hemicellulose, cellulose, and lignin) were determined by a three-parallel-reaction model. Moreover, the pyrolysis products were also characterized via FTIR and SEM. The results showed that the apparent activation energies of hemicellulose, cellulose and lignin were 86.523, 113.257 and 197.961 kJ/mol, respectively; the pre-exponential factors were 6.887 × 107, 8.179 × 109 and 1.801 × 1015 s−1, respectively; and the reaction mechanism functions were f(α) = α1.35629(1-α)0.34832[-ln(1-α)]−1.20128, f(α) = α3.42900(1-α)0.01288[-ln(1-α)]-2.84445, f(α) = α0.68738(1-α)3.09313[-ln(1-α)]-1.58522, respectively. The release temperature for volatile products of IHS pyrolysis was mainly between 440 and 840 K. IHS as an agricultural waste is a suitable feedstock to produce renewable energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.