Abstract

Tunnels in hard, jointed rock are commonly reinforced with shotcrete (sprayed concrete) applied directly on the irregular rock surface. The thickness for such linings can be as small as 50 mm, which result in a fast drying. The resulting shrinkage of the restrained lining is a well-known phenomenon, which leads to cracking. The installation of drainage systems also results in an end-restrained shotcrete lining that is more prone to shrinkage cracking. The drying process is a complex problem that depends on multiple factors such as cement content, porosity and ambient air conditions (i.e. temperature, relative humidity and wind speed). Two numerical models capable of capturing the structural effects of drying shrinkage were compared in this study. It was found that inclusion of non-linear drying shrinkage is important for accurately describing crack initiation in an end-restrained shotcrete slab. The best fit to the experimental data was obtained when the rate of drying was described as a non-linear decreasing function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.