Abstract

Chemical-looping combustion is a novel combustion technology with inherent separation of the greenhouse gas CO 2. The technology uses circulating oxygen carriers to transfer oxygen from the combustion air to the fuel. In this paper, oxygen carriers based on commercially available NiO and α-Al 2O 3 were prepared using the industrial spray-drying method, and compared with particles prepared by freeze-granulation. The materials were investigated under alternating oxidizing and reducing conditions in a laboratory fluidized bed, thus simulating the cyclic conditions of a chemical-looping combustion system. The particles produced by spray-drying displayed a remarkable similarity to the freeze-granulated oxygen carriers, with high reactivity when the bed was fluidized and similar physical properties when sintered at the same temperature. This is an important result as it shows that the scaling-up from a laboratory production method, i.e. freeze-granulation, to a commercial method suitable for large-scale production, i.e. spray-drying, did not involve any unexpected difficulties. A difference noticed between the spray-dried and freeze-granulated particles was the sphericity. Whereas the freeze-granulated particles showed near perfect sphericity, a large portion of the spray-dried particles had hollow interiors. Defluidization was most likely to occur for highly reduced particles, at low gas velocities. The apparent density and crushing strength of the oxygen carriers could be increased either by increasing the sintering temperature or by increasing the sintering time. However, the fuel conversion was fairly unchanged when the sintering temperature was increased but was clearly improved when the sintering time was increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.