Abstract

This study focuses on employing recent and accurate computational techniques, specifically the Sardar-sub equation [Formula: see text] method, to explore novel solitary wave solutions of the Gilson–Pickering [Formula: see text] equation. The GP equation is a mathematical model with implications in fluid dynamics and wave phenomena. It describes the behavior of solitary waves, which are localized disturbances propagating through a medium without changing shape. The physical significance of the [Formula: see text] equation lies in its ability to capture the dynamics of solitary waves in various systems, including water waves, optical fibers, and nonlinear acoustic waves. The study’s findings contribute to the advancement of mathematical modeling approaches and offer valuable insights into solitary wave phenomena. The stability of the constructed solutions is investigated using the properties of the Hamiltonian system. The accuracy of the computational solutions is demonstrated by comparing them with approximate solutions obtained through He’s variational iteration [Formula: see text] method. Furthermore, the effectiveness of the employed computational techniques is validated through comparisons with other existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.