Abstract
Numerous tests have been conducted on the feasibility of characterizing the surfaces of metal oxide powders using HPLC. An in-line filter housing was modified to serve as a sample chamber to replace the sample loop. A gradient pump was used to gradually increase eluent acidity to find the conditions at which the surface of a metal oxide powder began to dissolve. The theoretical masses of surface monolayers of metal oxide powders were compared with the experimentally determined masses of dissolved material thought to be from the surface to test whether surface and bulk dissolution phenomena in acidic conditions are separable and quantifiable. A set of methods was tested that could first dissolve a metal oxide sample’s surface, then separate and detect analyte species by chelation ion chromatography. Surface characterization by ion chromatography could be more cost-effective than existing methods, and reveal chemical properties of the sample where existing methods only give physical composition and properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.