Abstract

Abstract The Nanomaterial is a pioneer in the field of modern research for its unique properties. Human exposure analysis is inevitable due to the rapid growth in technology. The concern for human welfare indicates a need for reduction of human exposure towards the radiation caused by the devices. The dielectric properties of the nanomaterials can be ideal for exploration in the field of biomedical engineering. Specific absorption rate (SAR) is a vital parameter for exposure analysis. This paper investigates the impact of Nanomaterials on the human exposure analysis. For this purpose, a dipole radiating structure operating at GSM frequency of 900 MHz and 1800 MHz are designed with conventional Copper material and compared with Carbon nanomaterials such as Graphene, Single-walled carbon nanotube (SWCNT) and Multi-walled carbon nanotube (MWCNT) for performance evaluation. Further, the specific absorption rate estimates absorption of radiation in IEEE Sam phantom human head with equivalent tissue properties. The comparison of calculated SAR with the radiating structures that are designed with the equivalent properties of that of Nanomaterials. The evaluation of Nanomaterial Antennas at the center frequency is estimated, and performance is evaluated. The designed Nanomaterials interact with IEEE SAM Phantom and SAR is calculated. The analysis of SAR impact with nanomaterials is investigated in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.