Abstract
The molecular structure and the solvent/temperature effect on the tautomerism in a new Schiff base, (E)-4,6-dibromo-3-methoxy-2-[(p-tolylimino)methyl]phenol, were investigated using spectroscopic (NMR, UV-vis, FT-IR), crystallographic (XRD), computational (DFT and TD-DFT) methods and harmonic oscillator model of aromaticity (HOMA). The XRD, DFT and FT-IR results show that the compound exists in the phenol-imine form in the solid state. HOMA indices support the aromatic structure of the compound. DFT calculations were performed to understand proton transfer process and relatively close values were obtained for the energies of tautomers. UV-vis studies prove the solvent dependence of the tautomerism in the compound by revealing the existence of both phenol-imine and keto-amine forms in polar solvents and only the phenol-imine form in apolar solvent. The TD-DFT results for the electronic transitions lead to the same conclusion as the absorption spectra. 1H NMR and 13C NMR studies at room and low (-60 °C) temperatures indicate that the tautomeric equilibrium occurs rapidly in the compound. Therefore, it is difficult to observe two tautomers. However, the presence of tautomeric structures is clearly seen in acetone‑d6, alternatively underlying the solvent and temperature dependence of tautomerism in the title compound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.