Abstract

In this study, the material and electrical properties of La2O3/SiO2/4H-SiC metal–oxide–semiconductor (MOS) capacitors are systematically characterized. Thermal oxidization SiO2 with varying thickness (0 nm, 3.36 nm, 5 nm, 8 nm, and 30 nm) were coated with La2O3 using atomic layer deposition on n-type 4H-SiC. The stacking oxides were measured using atomic force microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy, and the MOS capacitors were measured by capacitance–voltage and current–voltage measurements. The results demonstrate that the main gate current leakage mechanisms are dependent on the thickness of the SiO2 oxide under the applied electric field. The primary mechanism for current leakage from the La2O3/4H-SiC MOS capacitor follows the Schottky emission mechanism due to its low conduction band offset. In contrast, the current leakage mechanism for the capacitor with a 3.36 nm SiO2 layer follows the Poole–Frenkel emission mechanism on account of its high trap charge density in the gate dielectric and at the interface. When the thickness of the SiO2 layer increases to 8 nm, lower leakage current is observed by reason of the low trap charge density and high conduction band offset when E ≤ 5 MV/cm. As the electric field strength increases to 5 MV/cm and 5.88 MV/cm (30 nm SiO2: 4.8 MV/cm), the main current leakage mechanism changes to the Fowler–Nordheim tunneling mechanism, which indicates that the La2O3/SiO2 stacking structure can improve the properties of MOS capacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.