Abstract

Graphene materials synthesized using direct laser writing (laser-induced graphene; LIG) make favorable sensor materials because of their large surface area, ease of fabrication, and cost-effectiveness. In particular, LIG decorated with metal nanoparticles (NPs) has been used in various sensors, including chemical sensors and electronic and electrochemical biosensors. However, the effect of metal decoration on LIG sensors remains controversial; hypotheses based on computational simulations do not always match the experimental results, and even the experimental results reported by different researchers have not been consistent. In the present study, we explored the effects of metal decorations on LIG gas sensors, with NO2 and NH3 gases as the representative oxidizing and reducing agents, respectively. To eliminate the unwanted side effects arising from metal salt residues, metal NPs were directly deposited via vacuum evaporation. Although the gas sensitivities of the sensors deteriorate upon metal decoration irrespective of the metal work function, in the case of NO2 gas, they improve upon metal decoration in the case of NH3 exposure. A careful investigation of the chemical structure and morphology of the metal NPs in the LIG sensors shows that the spontaneous oxidation of metal NPs with a low work function changes the behavior of the LIG gas sensors and that the sensors' behaviors under NO2 and NH3 gases follow different principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.