Abstract

Jerky domain wall motion during merging of neighboring domains in lithium niobate single crystals was studied in details by using synchronized in-situ optical visualization and recording of switching current shape. Several scenarios of domain structure transformation were revealed and classified. It has been shown that predetermined nucleation and layer-by-layer mechanism are main reasons for observed jerky domain wall motion. On the basis of the analysis of the current pulse shape the step growth velocity was estimated to be about 1 m/s. This value is several orders of magnitude higher than the averaged visible domain wall velocity in lithium niobate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.