Abstract
Biological treatment of saline wastewater is considered unfavorable due to salinity inhibition on microbial activity. In this study, intertidal wetland sediment (IWS) collected from a high saline environment was investigated as a novel inoculation source for anaerobic treatment of saline pharmaceutical wastewater. Two parallel lab-scale anaerobic sequencing batch reactors (AnSBR) were set up to compare the organic removal potential of IWS with conventional anaerobic digested sludge (ADS). Under steady-state condition, IWS reactor (R(i)) showed organic reduction performance significantly superior to that of ADS reactor (R(a)), achieving COD removal efficiency of 71.4 ± 3.7 and 32.3 ± 6.1%, respectively. In addition, as revealed by fluorescent in situ hybridization (FISH) analysis, a higher relative abundance of methanogenic populations was detected in R(i). A further 16S rRNA gene pyrosequencing test was conducted to understand both the bacterial and archaeal community populations in the two AnSBRs. A predominance of halophilic/tolerant microorganisms (class Clostridia of bacteria, genera Methanosarcina, and Methanohalophilus of archaea) in R(i) enhanced its organic removal efficiency. Moreover, several microbial groups related with degradation of hardly biodegradable compounds (PAHs, n-alkenes, aliphatic hydrocarbons, and alkanes, etc.) were detected in the IWS. All these findings indicated that IWS is a promising inoculation source for anaerobic treatment of saline wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.