Abstract

The interface roughness and interface roughness cross-correlation properties affect the scattering losses of high-quality optical thin films. In this paper, the theoretical models of light scattering induced by surface and interface roughness of optical thin films are concisely presented. Furthermore, influence of interface roughness cross-correlation properties to light scattering is analyzed by total scattering losses. Moreover, single-layer TiO 2 thin film thickness, substrate roughness of K9 glass and ion beam assisted deposition (IBAD) technique effect on interface roughness cross-correlation properties are studied by experiments, respectively. A 17-layer dielectric quarter-wave high reflection multilayer is analyzed by total scattering losses. The results show that the interface roughness cross-correlation properties depend on TiO 2 thin film thickness, substrate roughness and deposition technique. The interface roughness cross-correlation properties decrease with the increase of film thickness or the decrease of substrates roughness. Furthermore, ion beam assisted deposition technique can increase the interface roughness cross-correlation properties of optical thin films. The measured total scattering losses of 17-layer dielectric quarter-wave high reflection multilayer deposited with IBAD indicate that completely correlated interface model can be observed, when substrate roughness is about 2.84 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.