Abstract

In industrialized countries about 90% of the time is spent indoors. In indoor, thermal comfort can be basically predicted by the environmental parameters such as temperature, humidity, air velocity and by the personal parameters as activity and clothing resistance. In this study, a mathematical model of thermal interaction between human body and environment was established and the effect of clothing and air velocity was examined under transient conditions. By the developed model, human body has been separated to 16 segments and possible local discomforts are taken into consideration. Using the model, changes in the sensible and latent heat losses, skin temperature and wettedness, thermal comfort indices were calculated. In a hot environment latent heat loss increases by means of sweating. Because of over wetted skin, comfort sense goes worse. Especially, at feet and pelvis skin wettedness reaches maximum level. Sensible and latent heat losses rise and the skin temperature and wettedness decrease with increasing air velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.