Abstract

Sphingosine kinase 1 (SphK1) is a lipid kinase which plays vital role in the regulation of varieties of biological processes including, cell growth, apoptosis and mitogenesis. In the present study, we investigated the guanidinium chloride (GdmCl)-induced denaturation of SphK1 at pH 8.0 and 25 °C using two different spectroscopic probes, i.e., mean residue ellipticity at 222 nm ([θ]222) and fluorescence emission maxima (λmax). A significant overlap between the transition curves obtained from both the spectral properties indicate that GdmCl-induced unfolding of SphK1 follows two-state process i.e., Native (N) ⇌ Denatured (D) state. Interestingly, a visible protein aggregation was observed at low concentrations of GdmCl ([GdmCl] ≤ 1.5 M). The analysis of transition curves was done to estimate the thermodynamic parameters associated with the stability of SphK1. To complement our experimental findings, 100 ns molecular dynamics (MD) simulations were performed. Spectroscopic studies together with MD simulations provided mechanistic insights of unfolding pathway of SphK1 along with its stability parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.