Abstract

Abstract The disk friction loss is remarkably large in low specific speed centrifugal pumps, and an effective reduction method has not been established. Therefore, to develop the method, the loss mechanism was investigated. To grasp the internal flow structure in the narrow clearance, both experimental and computational approaches were used. An experimental apparatus that imitates clearance between a rotating impeller disk and a stationary casing disk was used and the static pressure distribution in the radial direction was measured. The internal flow where the disk friction loss occurs was investigated. In the case of outward flow, the static pressure decreased because the influence of the centrifugal force lessened toward the outer diameter of the disk, as the flow rate surged. For this reason, the pressure gradient became steep. According to the computational fluid dynamics (CFD) analysis, there was a vortex in the cross section of the clearance. This vortex encouraged flow recirculation and promoted the increase in the circumferential velocity in the potential core. When the flow rate grew, the vortex diminished. The circumferential velocity gradient and the shear stress intensified. As a result, the disk friction escalated. In the case of inward flow, the pressure gradient became steep as the flow rate increased. There was a vortex in the clearance, the size of which lessened when the flow rate surged. The disk friction had a minimum value at the flow rate was 6 × 10−4 m3/s. This research clarified that the vortex in the clearance has a remarkable effect on reducing the disk friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.