Abstract
Ionomeric polymer transducers have received considerable attention in the past ten years due to their ability to generate large bending strain and moderate stress at low applied voltages. Bending transducers made of an ionomeric polymer membrane sandwiched between two flexible electrodes deform through the expansion of one electrode and contraction of the opposite electrode due to cation displacement. This is similar to a bimorph type actuation. In this study we report actuation through the thickness of the membrane, leading to the potential of a new actuation mechanism for ionomeric polymer materials. Several experiments are performed to compare the bending actuation with the extensional actuation capability. The direct assembly method previously developed by the authors is used to fabricate ionic polymer transducers with controlled electrode dimensions and morphology. Electrodes with varying thickness are used to alter thickness of the active material. In the first experiment, the actuators are cut in beam shape and are allowed to bend in cantilever configuration. In the second configuration, bending is constrained by sandwiching the membranes between two solid metal plates and force is measured across the thickness of the actuator. A bimorph model is used to assess the effect of electrode thickness on the strain. An electromechanical coupling model presented by Leo et al. [1] determined the strain in the active areas as a function of the charge. This model is presented with a linear and a quadratic term that produces a 1st harmonic response for a sine wave actuation input. The quadratic term in the strain generates a zero net bending moment for ionic polymer transducers with symmetric electrodes. The linear term is also canceled in extensional actuation for symmetric electrodes. Experimental results demonstrates strain on the order of 110 μstrain in the thickness direction compared to 1700 μstrain peak to peak on the external fibers for the same transducer when it is allowed to bend under +/−2V potential at 0.5 Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.