Abstract

ABSTRACT In this study, the surface properties of copper layers on a zirconium substrate were investigated. The copper deposits with thicknesses of 25, 50, and 100 μm were formed using the electroplating method. The evaluations of coating thickness, surface morphology, crystallite size, and grain distribution were performed by using the relevant analytical equipment. The results showed that by increasing the thickness of the copper layer, a more uniform cauliflower morphology was obtained. Also, by increasing the thickness of the copper deposit, the crystallite size was decreased from 70 to 20 nanometers and the strain energy was decreased from 2.9 × 10−3 J to 6.5 × 10−3 J. The copper layer with a thickness of 100 μm was the most wear resistance compared to other coatings. The highest hardness value, uniform morphology, and more twin islands in different areas were the main reasons for improving the wear resistance of the copper layer with a thickness of 100 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.