Abstract

We investigated the electron configurations that are dominant in excited states of molecules in time-dependent density functional theory (TDDFT). By taking advantage of the discussion on off-diagonal elements in the TDDFT response matrix (Appel et al., Phys Rev Lett, 90, 043005, 2003), we can pick up electron transitions that contribute to an excitation of interest by making use of the diagonal elements of the TDDFT matrix. We can obtain approximate excitation energies by calculating a TDDFT submatrix, which is contracted for a list of collected transitions. This contracted TDDFT was applied to the calculation of excitation energies of the CO molecule adsorbing Pt 10 cluster and some prototype small molecules. Calculated results showed that a TDDFT excitation energy is dominated by a few electron configurations, unless severe degeneracy is involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.