Abstract

In this paper, we present a non-linear model for the study of DNA denaturation transition. To this end, we assume that the double-strands DNA interact via a realistic generalized Morse potential that reproduces well the features of the real interaction. Using the Transfer Matrix Method, based on the resolution of a Schrödinger equation, we first determine exactly their solution, which are found to be bound states. Second, from an exact expression of the ground state, we compute the denaturation temperature and the free energy density, in terms of the parameters of the potential.Then, we calculate the contact probability, which is the probability to find the double-strands at a (finite) distance apart, from which we determine the behaviour of the mean-distance between DNA-strands.The main conclusion is that, the present analytical study reveals that the generalized Morse potential is a good candidate for the study of DNA denaturation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.