Abstract

To address the environmental issues arising from the growing scarcity of natural fine aggregates (NFA) and landfilling of waste glass, research is being conducted globally to utilize waste glass as a sustainable fine aggregate. However, contradictory results have been obtained regarding the effect of the type of waste glass and the physical properties of waste glass fine aggregate (GFA) on concrete, making it challenging to promote the use of GFA in concrete. Therefore, to promote the use of GFA in concrete, it is necessary to examine it under field conditions, such as mass-production processes or real-scale concrete applications. This study introduced a mass-production process for GFA, and the effect of mass-produced GFA on mortar was evaluated. The fine aggregate properties (particle aspect ratio, crushing rate, and solubility) of the GFA and the effects of color, content, and particle size on the mortar properties (compressive strength, flexural strength, and ASR expansion behavior) were analyzed, along with the results reported in previous studies. Consequently, the high aspect ratio and microcracks in the particles of mass-produced GFA led to an increase in the strength reduction and ASR expansion of the mortar. These effects appear to be particularly severe for transparent GFA. Overall, this study proposed the content of GFA within 20% or the replacement of fine particles (< 500 μm) in NFA as a condition for sustainable fine aggregate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.