Abstract
Calcined coke is a competitive material for making carbon anodes for smelting of alumina to aluminum. Calcining is an energy intensive industry and a significant amount of heat is exhausted in the calcining process. Efficiently managing this energy resource is tied to the profit margin and survivability of a calcining plant. To help improve the energy efficiency and reduce natural gas consumption of the calcining process, a 3D computational model is developed to gain insight of the thermal-flow and combustion behavior in the calciner. Comprehensive models are employed to simulate the moving petcoke bed with a uniform distribution of moisture evaporation, devolatilization, and coke fines entrainment rate with a conjugate radiation-convection-conduction calculation. The following parametric studies are conducted: rotation angles, tertiary air injection angles, devolatilization zone length, discharge end gas extractions without injecting natural gas, variations of coke bed properties (thermal conductivity and heat capacity), and coke bed sliding speed. A total of 19 cases have been simulated. The results of studying the effect of tertiary air injection angles show that employing 15 deg tertiary air injection angle provides the best calcining condition than using 30 deg and 45 deg injection angles by achieving a higher coke bed temperature and less coke fines entrainment and attrition rate. In an attempt to reduce natural gas consumption, employing gas extraction at the discharge end successfully draws the hot combustion gas from the tertiary air zone towards the discharge end without burning natural gas. The coke bed temperature between 6 and 21 m from the discharge end is successfully raised 10–100 K higher, but discharge end temperature is reduced 150 K without burning natural gas. The extracted gas at 1000 K is too low to be returned to the kiln, but it could be used to preheat the tertiary air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.