Abstract

Management of bacterial survival post chlorine disinfection is vital for safe wastewater reuse for irrigation, as the presence of microorganisms in large numbers may lead to subsequent contamination of the surface and ground water reservoirs. Even after satisfying the current norms of coliform counts after disinfection (less than 1000 MPN per 100 mL), chlorine tolerant bacteria surviving in inadequately treated wastewater may pose a public health threat as many of these bacteria are able to re-grow upon storage. The current study is aimed to assess the magnitude of the problem posed by chlorine tolerant bacteria during chlorine disinfection and attempts to derive a strategy for safe disinfection. The chlorine tolerance was examined in the dominant gram negative bacteria (GNB) recovered from secondary treated sewage from a treatment plant located at Jaipur, India. Bacterial survival and re-growth (after 24 h) studies on test species (n = 11) with reference to E.coli ATCC 25922 reveal that, while the lethal doses of isolates ranged from 0.5 to 1.25 mgL−1,the chlorine doses for complete inhibition of re-growth were much higher (0.75–1.75 mgL−1).The isolates showing highest lethal dose and re-growth inhibition dose, identified as Citrobacter freundii, Klebsiella sp. and Stenotrophomonas maltophilia also exhibited very low log effective reduction (0.72–1.90) values and were selected as chlorine tolerant bacteria. Results of inactivation kinetics experiments on chlorine tolerant bacteria reveal a strong correlation (R2 > 0.89–0.99) between log reduction values and contact time. In re-growth kinetics experiments, maximum re-growth was observed after 6 h exposure following which, only marginal increase was registered up to 24 h. The study indicates that the existing approach of bacterial elimination post chlorine treatment may be grossly inadequate to assess the performance of the disinfection process adopted for drinking water treatment. It further brings out a novel approach to arrive at meaningful chlorine doses that take bacterial re-growth into account for achieving safe disinfection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.