Abstract

Pyrazole-based carbohydrazone hybrids have been considered to be a remarkable class of compounds in pharmaceutical chemistry. Here, we reported bioactivities of 4-(3-(2-(arylidene)hydrazin-1-carbonyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamides (1–27) towards CA isoenzymes (hCA I, hCA II, hCA IX) and human oral squamous cell carcinoma cell line. Compounds 19 (Ki = 10.1 nM, hCA I/hCA IX = 749.6), 22 (Ki = 18.5 nM, hCA I/hCA IX = 429.2), 26 (Ki = 14.5 nM, hCA I/hCA IX = 596.9), 27 (Ki = 21.5 nM, hCA I/hCA IX = 413.1) were more potent and selective inhibitors of cancer-associated hCA IX isoenzyme. Compounds 22 and 26 were also found to be approximately three times more selective hCA IX inhibitors over off-target hCA II at low nanomolar. Compounds 19, 22, 23, 24, and 26 with IC50 of 1.6–1.7 μM showed potent cytotoxicity against human oral squamous cell carcinoma cell line as compared with human gingival fibroblast, producing the tumor-specificity value over 100. This was due to its cytostatic growth inhibition accompanied by a slight but significant dose-dependent increase in cell shrinkage and subG1 cell accumulation and marginal activation of caspase 3 substrates. Bioassay results showed that carbohydrazone-based hybrids could be useful candidates to design novel anticancer compounds and selective carbonic anhydrase inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.