Abstract

The inherent nature concerning the intermittency of concentrating solar power (CSP) plants can be overcome by the integration of efficient thermal energy storage (TES) systems. Current CSP plants employ molten salts as TES materials although metal hydrides (MH) have proven to be more efficient due to their increased operating temperatures. Nonetheless, the heat exchange between the MH bed and the heat transfer medium used to operate a heat engine is a critical factor in the overall efficiency of the TES system. In this work, a computational study is carried out to investigate the performance of a magnesium hydride TES packed bed using a multiphase (boiling) medium instead of single-phase heat absorption methods. The boiling heat transfer behaviour is simulated by using the Eulerian two-fluid framework. The simulations are conducted at a transient state using SST-k-ω Reynolds-Averaged Navier-Stokes equations. It is observed that, unlike the single-phase heat collection method, the multiphase heat absorption method maintains a constant temperature in the heat transfer fluid throughout the reactor. Consequently, a higher temperature gradient is realised between the MH bed and heat transfer fluid (HTF), leading to improvements in the overall reaction rate of the hydrogenation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.