Abstract

In the present study, the dynamic response of block foundations of different equivalent radius to mass (Ro/m) ratios under coupled vibrations is investigated for various homogeneous and layered systems. The frequency-dependent stiffness and damping of foundation resting on homogeneous soils and rocks are determined using the half-space theory. The dynamic response characteristics of foundation resting on the layered system considering rock–rock combination are evaluated using finite element program with transmitting boundaries. Frequencies versus amplitude responses of block foundation are obtained for both translational and rotational motion. A new methodology is proposed for determination of dynamic response of block foundations resting on soil–rock and weathered rock–rock system in the form of equations and graphs. The variations of dimensionless natural frequency and dimensionless resonant amplitude with shear wave velocity ratio are investigated for different thicknesses of top soil/weathered rock layer. The dynamic behaviors of block foundations are also analyzed for different rock–rock systems by considering sandstone, shale and limestone underlain by basalt. The variations of stiffness, damping and amplitudes of block foundations with frequency are shown in this study for various rock–rock combinations. In the analysis, two resonant peaks are observed at two different frequencies for both translational and rotational motion. It is observed that the dimensionless resonant amplitudes decrease and natural frequencies increase with increase in shear wave velocity ratio. Finally, the parametric study is performed for block foundations with dimensions of 4 m × 3 m × 2 m and 8 m × 5 m × 2 m by using generalized graphs. The variations of natural frequency and peak displacement amplitude are also studied for different top layer thicknesses and eccentric moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.